Recherche & Développement Toutes les publications Benchmark sur les algorithmes de ML supervisé interprétables

Benchmark sur les algorithmes de ML supervisé interprétables


Télécharger le fichier

ETUDE INTERNE
AUTEURS :  ERNESTO LOPEZ FUNE, VALENTIN MESSINA, AMANDE EDO

L’interprétabilité des algorithmes de machine learning (ML) est cruciale dans des domaines sensibles tels que la finance et la médecine. Ce benchmark compare divers algorithmes supervisés, paramétriques et non-paramétriques, en analysant leurs mécanismes décisionnels. Les modèles paramétriques, tels que la régression linéaire et logistique, offrent une interprétation simple, tandis que les algorithmes non-paramétriques, comme les SVM et les arbres de décision, nécessitent des techniques supplémentaires pour en expliquer les décisions. Nous soulignons l’importance de choisir un modèle adapté aux besoins d’interprétabilité et de complexité, afin d’assurer une meilleure acceptation des modèles dans des contextes exigeants.

Télécharger le fichier

Publications récentes

#news

Finance Durable – Novembre 2025 : Défense, coalitions climatiques, reporting durable et nouvelles publications

21/11/2025

Finance Durable – Octobre 2025 : Défense, coalitions climatiques, reporting durable et nouvelles publications

Lire plus
Illustration de la révision de la directive Solvabilité II et de ses implications pour les assureurs

28/10/2025

Les premiers impacts de la révision de la Solvabilité 2

Lire plus
Dégradation De La Biodiversité Un Risque Croissant En Santé Prévoyance Nexialog Consulting

21/10/2025

Dégradation de la biodiversité : un risque croissant en santé et prévoyance

Lire plus
}) })