Recherche & Développement Toutes les publications Benchmark sur les algorithmes de ML supervisé interprétables

Benchmark sur les algorithmes de ML supervisé interprétables


Télécharger le fichier

ETUDE INTERNE
AUTEURS :  ERNESTO LOPEZ FUNE, VALENTIN MESSINA, AMANDE EDO

L’interprétabilité des algorithmes de machine learning (ML) est cruciale dans des domaines sensibles tels que la finance et la médecine. Ce benchmark compare divers algorithmes supervisés, paramétriques et non-paramétriques, en analysant leurs mécanismes décisionnels. Les modèles paramétriques, tels que la régression linéaire et logistique, offrent une interprétation simple, tandis que les algorithmes non-paramétriques, comme les SVM et les arbres de décision, nécessitent des techniques supplémentaires pour en expliquer les décisions. Nous soulignons l’importance de choisir un modèle adapté aux besoins d’interprétabilité et de complexité, afin d’assurer une meilleure acceptation des modèles dans des contextes exigeants.

Télécharger le fichier

Publications récentes

#news

European green bonds assessment methodology - Nexialog Consulting

11/04/2025

EUROPEAN GREEN BONDS ASSESSMENT METHODOLOGY

Lire plus
Les rencontres de l'Institut de la Finance Durable Nexialog

10/04/2025

Retour sur les Rencontres de l’Institut de la Finance Durable

Lire plus

28/03/2025

Quels rendements pour l’assurance vie sur le marché Français en 2024 ?

Lire plus