Recherche & Développement Toutes les publications MLOps – Comment rendre opérationnel un modèle de machine learning ?

MLOps – Comment rendre opérationnel un modèle de machine learning ?


Télécharger le PDF
ETUDE INTERNE
AUTEUR : MARVIN SUZANNE

 

La complexité et les challenges induits par le déploiement de systèmes de machine learning (ML) sont parfois sous-estimés au profit des efforts engagés sur la phase de développement.

Hors, les applications à base de ML sont différentes des logiciels standards dans la mesure où leur performance repose essentiellement sur de la donnée.

Comme les données évoluent en permanence, les modèles en production doivent être monitorés, re-entraînés et redéployés, afin de garantir un niveau de performance similaire en production et en phase de développement.

Cette note donne une vision synthétique des différentes étapes fonctionnelles d’un projet ML : Data Engineering, Model Engineering et Déploiement.

 

 

Télécharger le PDF

Publications récentes

#news

22/10/2024

Métamodélisation ALM : étude de performance sur différents cas d’usage en épargne-retraite

Lire plus
Allocation De Portefeuille Divergence ESG Nexialog Consulting

11/10/2024

Allocation de portefeuille dans un contexte de divergence ESG

Lire plus

11/10/2024

Benchmark des scénarios climatiques pour la gestion des risques financiers

Lire plus