Recherche & Développement Toutes les publications Markov Switching Normal-Mixture GARCH

Markov Switching Normal-Mixture GARCH


Télécharger le PDF

ETUDE INTERNE
AUTEURS : ADRIEN MISKO, BAYE MATAR KANDJI

We introduce a volatility model in which the conditional volatility is driven by both a Markov switching (MS) sequence and innovations with normal mixture (NM) distributions, called MS-NM-GARCH. The existence of a strictly stationary solution and a second-order stationary solution is discussed. We use the likelihood approach to estimate the parameters of the model and, to our knowledge, establish for the first time the strong consistency of the maximum likelihood estimator (MLE) of a class of MS-GARCH under standard regular conditions. We develop an iterative algorithm based on the Hamilton filter and the Expectation Maximization algorithm to efficiently compute the MLE. Finally, we test our model to real financial data, showcasing its practical relevance.

Télécharger le PDF

Publications récentes

#news

22/10/2024

Métamodélisation ALM : étude de performance sur différents cas d’usage en épargne-retraite

Lire plus
Allocation De Portefeuille Divergence ESG Nexialog Consulting

11/10/2024

Allocation de portefeuille dans un contexte de divergence ESG

Lire plus

11/10/2024

Benchmark des scénarios climatiques pour la gestion des risques financiers

Lire plus